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Ensuring the microbial safety and shelf life of
foods depends on minimizing the initial level of
microbial contamination, preventing or limiting
the rate of microbial growth, or destroying
microbial populations. With many foods, these
strategies have been practiced successfully for
thousands of years. However, in the last decade,
the incidence of foodborne disease has increased
in the industrialized world (1), despite the
introduction of the Hazard Analysis and Critical
Control Points (HACCP) concept and the
promulgation of regulations in food safety. The
increased incidence of foodborne disease is
caused by changes in agricultural and food
processing practices, increasing international
trade in foods, and social changes (which include
changed eating habits and increased population
mobility) (2).

This article develops the propositions that
available quantitative information, properly
applied, is a basis for improved food safety; the
information available, largely an empiric descrip-
tion of microbial behavior in foods, highlights a
lack of understanding of the physiology of
foodborne pathogens; and knowledge of the
physiology may lead to more precise control of
foodborne bacteria and novel protocols to ensure
the microbiologic safety of foods.

Characteristics of Bacteria
Bacteria have inhabited the earth for

approximately three and a half billion years and
have colonized almost every conceivable habitat
(3). In fact, the development of microbial
populations is probably precluded only when
liquid water is absent or conditions are so
extreme that rapid denaturation of proteins
outpaces their rate of replacement. The major
characteristics that underpin the success of
prokaryotes are small size and ease of dispersal,
physiologic diversity, and tolerance of extreme
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conditions (4). The temperature range over which
microbial populations develop is -12°C (the
temperature at which intracellular water
freezes) to +112°C (the temperature at which
liquid water is maintained only under elevated
pressure). The pH range is pH 1 to pH 12, and the
salinity range is zero to saturated (4).

Langeveld et al. (5), who studied microbial
development in biofilms in a tubular heat
exchanger used to pasteurize milk, report the
exploitation of different ecologic niches by
bacteria. Through the ascending temperature
range of the tube (~20°C to ~90°C), the dominant
microbiota changed from gram-negative bacteria
such as Acinetobacter, to coliforms to Streptococ-
cus thermophilus to thermophilic bacilli. At the
highest temperature, the wall of the exchanger
was colonized by Thermus thermophilus. Thus, it
appears that contaminants deposited along the
length of the tube were selected by the in situ
temperature, with the fastest-growing organism
dominating.

Factors Affecting Microbial Behavior in
Foods

Most studies in food microbiology are
concerned with the rapid growth of populations,
but in many ecosystems, the survival characteris-
tics of the population also need to be considered.
The longevity of bacterial spores and their
resistance to harsh conditions are well docu-
mented. However, the ability of vegetative cells
to resist stressful conditions is increasingly
recognized as an important ecologic trait (6).
Attention also needs to be given to relatively
slow-growing populations in various situations,
e.g., when the shelf life of a product is extended by
control of rapidly growing spoilage organisms.
The behavior of foodborne microorganisms, be it
the growth or death of microbial populations, is
based on the time of exposure to environmental
factors affecting population development; for
example, equivalent kills of bacteria in milk are
achieved by low temperature–long time pasteur-
ization (60°C/30 min) and high temperature–
short time pasteurization (72°C/15 sec). When
populations are in the biokinetic range, the rate
at which they develop is determined by factors
such as temperature, water availability, and pH
applied in food preservation procedures. The
extent of microbial growth is a function of the
time the population is exposed to combinations of
intrinsic food properties (e.g., salt concentration

and acidity) and extrinsic storage conditions (e.g.,
temperature, relative humidity, and gaseous
atmosphere).

Different factors assume dominance in
different foods and preservation strategies. In
many foods, the full preservation potential of a
single property is restricted because of consider-
ations related to the esthetic, organoleptic, and
nutritional properties of the product. However,
several properties or conditions may be combined
to provide a desired level of stability (7). In
situations where the preservation strategy is
designed to slow the rate of population growth,
the effect will always be increased by storage
temperature. Temperature control in processing,
distribution, and storage (the cold chain) is
crucial to ensure the adequate shelf life and
safety of many common foods, including meat,
fish, poultry, and milk. Newer technologies,
including modified atmosphere packaging and
sophisticated products such as sous-vide meals,
do not obviate the need for strict temperature
control. Indeed, the requirement for vigilance
increases with increased shelf life and the
possibility of growth of psychrotrophic pathogens
over an extended period.

Predictive Microbiology
Predictive microbiology involves knowledge

of microbial growth responses to environmental
factors summarized as equations or mathemati-
cal models. The raw data and models may be
stored in a database from which the information
can be retrieved and used to interpret the effect of
processing and distribution practices on micro-
bial proliferation. Coupled with information on
environmental history during processing and
storage, predictive microbiology provides preci-
sion in making decisions on the microbiologic
safety and quality of foods. The term “quantita-
tive microbial ecology” has been suggested as an
alternative to “predictive microbiology” (8).

The development, validation, and application
of predictive microbiology has been extensively
reviewed in the last decade (9,10). Modeling
studies have concentrated on descriptions of the
effect of constraints on microbial growth (rather
than survival or death), often using a kinetic
model approach (rather than probability model-
ing) and most often describing the effect of
temperature as the sole or one of a number of
controlling factors. For example, the temperature
dependence model for growth of Clostridium
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botulinum demonstrated a good fit to data, but
the authors noted that “care must be taken at
extremes of growth, as no growth may be
registered in a situation where growth is indeed
possible but has a low probability” (11).

The emphasis in modeling efforts on
temperature (often in combination with other
factors) may be justified, given its crucial role in
the safe distribution and storage of foods.
Surveys carried out over several decades in the
United Kingdom, United States, Canada, and
Australia point to the predominant role of
temperature abuse in outbreaks of foodborne
disease (12-14).

Problems with Predictive Microbiology
and Research Needs

Several commonly perceived problems with
predictive modeling (8) are reviewed below.
While considerable progress has been made in
defining philosophic approaches and experimen-
tal protocols for growth model development and
many models have been developed and pub-
lished, more validation studies are required,
particularly involving independent and industry-
based trials. More emphasis should be placed on
modeling the death kinetics of foodborne
pathogens with low infective doses.

Measurement of environmental factors (e.g.,
temperature) can be achieved with precision, but
in some situations, (e.g., in chilling of meat
carcasses), it is more difficult. Location of the
sensor can be an important consideration (15,16).
In meat chilling, where control of microbial
development is a function of the combined effects
of falling temperature and water activity,
development of a technique to measure water
activity in situ at the carcass surface would
provide valuable information. Furthermore,
development of techniques to measure con-
straints such as water activity, pH, or redox
potential on a microscale might provide useful
information for a complex food such as salami.
This would allow definition of the role of the
microenvironment in determining microbial
behavior. The concept of a microenvironment is
well developed in soil microbiology (17) but has
been neglected in food microbiology.

The inherent variability of response times
(generation time and lag phase duration) as an
issue in predictive microbiology was first raised
by Ratkowsky et al. (18), who related the variance
of responses on a transformed rate scale such as

V(√k) or V(lnk) to the variances of responses on a
time (θ) scale. The variance was shown to be
proportional to the square or cube of the response
time. It was later confirmed (19-21) that
nonnormal gamma and inverse Gaussian distri-
butions described the distribution of response
times in predictive microbiology, which indicate
that variance is proportional to the square or
cube of the response time, respectively.

The practical implication of these findings for
the application of kinetic models is that inherent
biologic variability increases markedly with
increasing response times, and thus the
confidence limits associated with predictions also
increase markedly. However, if the probability
distribution of the response time is known, one
can determine the probability that an organism
will grow more quickly than a predicted response
time (21). Thus, kinetic models are appropriate to
describe consistent microbial growth responses,
but under extreme conditions a probability
approach may be required.

Models are normally developed under static
conditions (growth rates and lag times are
measured at a series of set temperatures, water
activity values, and pH levels), and the results
are combined to describe the effects of each factor
or a combination of factors on population
development. Subsequently, models must be
validated in foods under conditions that mimic
situations encountered in normal practice, e.g.,
decreasing temperature and water activity
during active chilling of meat carcasses or
fluctuating temperatures during the distribution
and storage of many food commodities.

Shaw (22) and later several other authors
(23-26) reported on the effect of fluctuating
temperatures. Depending on the magnitude of
the temperature deviation, the organism may
change its rate of growth to a rate characteristic
of the new temperature, or it may stop growing if
a lag phase is introduced.  In both situations,
Salmonella Typhimurium has responded nearly
as predicted by the model (24,25). Baranyi et al.
(26) presented similar results for the spoilage
bacterium Brocothrix thermosphacta. When
cycled between 25°C and 5°C, the model
predicted behavior well in both the growth rate
and lag phase duration. However, a temperature
shift from 25°C to 3°C caused deviations from
model predictions due to decline in viable cell
numbers or extended lag phases. During the final
extended phase of growth at 2.8°C, the rate
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resumed at that predicted. Baranyi et al. (26) also
examined the perceived problem of modeling lag
phase duration. The difficulty in predicting lag
phase duration in foods is not due to the lack of a
suitable model: the difficulty comes from the lack
of knowledge of the physiologic status of the
organisms contaminating the food. The organ-
isms may include cells that are actively growing,
exhibiting a physiologic lag phase, damaged and
under repair, exhibiting physiologic (endospores)
or exogenous dormancy (VNC cells), damaged but
unable to reproduce because of ineffective repair
mechanisms, and dead. At least part of the
confusion surrounding the measurement of lag
phase duration arises from experiments in which
inocula of different physiologic statuses were
used (27,28).

Methods to define the physiologic status of
foodborne contaminants under various condi-
tions need to be developed. This will require
observations on individual cells or small
populations of cells either directly by microscopy
or an indicator of single-cell metabolic activity
(26). Luminescent Salmonella strains have been
used as real-time reporters of growth and
recovery from sublethal injury (29). Alterna-
tively, a parameter to describe the suitability of
cells to grow in a new environment may be
incorporated in the model (26).

Current Status of Predictive Microbiology
Some problems with predictive microbiology

have been discussed, and, for each, needed
research has been suggested. Opinions vary on
the efficacy of models to predict outcomes under
real life conditions. At one end of the scale,
accuracy such as that described for the growth of
Pseudomonas in minced beef (Figure 1) can be

obtained in trials conducted independently of the
laboratory in which the model was developed. At
the other end, models developed in laboratory
broth systems have been reported to be
inappropriate to describe growth on food (30).
Dalgaard (31) reported similar discrepancies and
suggested an iterative approach to model
development using food, rather than laboratory
media, as the growth substrate for model
development. Such reports emphasize the need
for rigorous validation of models under practical
conditions. Deviations from predictions do not
necessarily imply that the model is defective but
more likely that knowledge of some food
ecosystems is incomplete and factors other than
those used in model development have an effect
on microbial behavior.

The common theme of the problems in
predictive microbiology discussed above is that of
uncertainty—uncertainty in terms of the starting
conditions (e.g., initial microbial numbers and
types) and the microbial response in a given or
changing environment. Uncertainty translates to
variability if the distribution of response times is
understood and the variance can be described. As
we have indicated above, the variability
associated with very long response times limits
the utility of kinetic models and requires a
probability approach. Thus, while in the last
decade predictive modelers were justified in their
selection of temperature as a primary factor to
model in kinetic approaches, the next decade may
see a return to probability modeling as pioneered
by Genigeorgis (32) and Roberts (33). This shift
will derive impetus from the emergence of
dangerous pathogens with very low infective
doses, and continued kinetic modeling will
concentrate on survival and death rather than
growth of populations.

The first kinetic death model to find
widespread use in the food industry was for
thermal destruction (34). One can consider a
model describing a 12-log cycle reduction in C.
botulinum spores in a short time with
considerable certainty. However, as we move
toward less severe processes with longer
response times and the added complications of
“shoulders” and “tails” to define the growth/no
growth interface, biologic variability will again
dictate a probability approach to describe the
survival and slow decline of microbial popula-
tions.

Figure 1. Validation of Pseudomonas predictor in minced
beef . Printed with permission of G. Thomson, Defence Force
Food Science Centre, Scottsdale, Tasmania, Australia.
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Defining the Growth/No Growth Interface
Because growth of pathogenic bacteria in

foods always increases the risk for foodborne
disease, defining the conditions at which no
growth is possible is of considerable practical
significance for food manufacturers and regula-
tors. Bacterial growth/no growth interface
models quantify the combined effect of various
hurdles on the probability of growth and define
combinations at which the growth rate is zero.
Increasing the level of one or more hurdles at the
interface by only a small amount will signifi-
cantly increase the probability of “fail safe”
events and decrease the probability that a few
cells in the population will resolve the lag phase
and begin to grow (a “fail dangerous” event) (7).
The growth/no growth interface also has great
physiologic significance because at that point
biosynthetic processes are insufficient to support
population growth, and survival mechanisms are
in place.

A procedure to derive the interface was
proposed by Ratkowsky and Ross (35); it employs
a logistic regression model to define the
probability of growth as a function of one or more
controling environmental factors. From this
model, the boundary between growth and no
growth, at some chosen level of probability, can
be determined. The form of the expression
containing the growth limiting factors is
suggested by a kinetic model, while the response
at a given combination of factors is either
presence or absence (i.e., growth/no growth) or
probabilistic (i.e., the fraction of positive
responses in n trials). This approach represents
an integration of probability and kinetic
approaches to predictive modeling.

Microbial Responses to Stress and
Microbial Physiology

Bacteria have physiologic mechanisms en-
abling them to survive in environments that
preclude their growth. While some tolerance to
environmental insults is adaptive, a wide range
of protective mechanisms is induced when cells
enter a stationary phase or become starved.
These phenomena are under the control of the
rpoS gene, which codes for a stationary-phase–
specific sigma factor, expression of which triggers
the development of a semidormant state in which
bacteria can better resist multiple physical
challenges (36). This factor and the gene products

whose expression it controls are of vital
significance to food microbiology; they form the
basis for a global stress response in which one
stress can confer protection to a wide range of
other stresses. Under the influence of this factor,
bacterial cells respond very quickly to unfavor-
able changes in their environment. Often these
responses are phenotypic and remain in place
only during stress (37).

Low pH Tolerance
Brown et al. (37) demonstrated “acid

habituation” (38), a phenotypic response to an
environmental insult, for five strains of Escheri-
chia coli. These strains showed a wide range of
intrinsic acid tolerance, which for each strain was
enhanced by exposure to nonlethal acidity (pH 5)
before exposure to a lethal acid challenge (pH 3).
Neutralization of the growth medium partially
reversed tolerance to acid stress, underlining
that acid habituation is a phenotypic response.
Furthermore, acid tolerance was correlated with
changes in the fatty acid composition of the cell
membrane. During acid habituation,
monounsaturated fatty acids (16:1w7c and
18:1w7c) in the phospholipids of E. coli were
either converted to their cyclopropane deriva-
tives (cy17:0 and cy19:0) or replaced by saturated
fatty acids. The degree of acid tolerance of the five
strains of E. coli was highly correlated with the
membrane cyclopropane fatty acid content,
which may enhance the survival of cells exposed
to low pH.

Low Water Activity Tolerance
Bacterial cells, when confronted by lowered

water activity, regulate the internal environment
by rapidly accumulating compatible solutes such
as glycine betaine or carnitine (39). The solutes,
which may be scavenged by the cell, exert their
influence at very low concentrations; the effect is
demonstrated both in limits and rate growth.
These compounds appear also to provide
cryotolerance as well as osmotolerance (40;
Figure 2).

Energy Diversion
Microbial responses to stressful conditions

may constitute a drain on the energy resources of
the cell, e.g., in relation to the accumulation of
compatible solutes (41). Knochel and Gould (42)
argued “that restriction of the availability of
energy will interfere with a cell’s reaction to
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osmotic stress.” The energy diversion hypothesis
was supported by McMeekin et al. (9) on the basis
of observations on the growth of Staphylococcus
xylosus at nine different levels of water activity.
Though Tmin, the theoretic minimum temperature
for growth, remained constant, the actual
minimum temperature at which growth was
observed increased with decreasing water
activity, suggesting energy expenditure to cope
with aw stress.

Krist and Ross (unpub. data), however,
challenged this explanation because of findings
from growth rate and yield experiments on E. coli
growing in a glucose-limited minimal minerals
medium. With both decreasing temperature and
water activity, the  growth rate declined
gradually, but the yield was not greatly affected
until close to the point where growth ceased. As
the substrate was converted to the same amount
of biomass, this suggests that the stresses
imposed by suboptimal temperature or water
activity are not a major drain on the cell’s energy
reserves. Compatible solutes likely ameliorate
the effect of both factors by maintaining enzymes
in an active configuration (39). With pH, the
growth rate of many organisms is unaffected
across a wide range of pH values. To maintain
intracellular pH, the cell uses considerable
energy to export protons (43), and thus it is

anticipated that yield will be affected.
Increasing knowledge of the physiologic

response of bacterial cells to individual con-
straints and combinations of constraints will
provide greater precision in defining growth-
limiting conditions and possibly allow develop-
ment of novel protocols to ensure the microbial
safety of foods. As an example, the remarkable
effect of compatible solutes on the growth rate
and growth range conditions is an obvious
advantage for bacteria growing under stressful
conditions (Figure 2). Compatible solutes, such as
betaine and carnitine, are widely distributed in
foods of plant and animal origin and are easily
available to bacteria and rapidly taken up by
specific transport mechanisms (39,40). It is
unlikely that growth might be controlled by
“creating a hostile environment devoid of
osmolytes,” as suggested by Smith (44). However,
it might be possible to use the specific uptake
mechanism to deliver a compatible solute
analogue with lethal effects on the cell.
Alternatively, if the cell is moved from an
environment in which growth is possible to one
where growth ceases, compatible solutes may
also allow enzymic reactions to continue within
the cell, depleting energy reserves and inducing a
greatly extended lag phase or death. This
hypothesis is supported by the observations of
many authors that survival is better at low rather
than ambient temperatures. For example,
Clavero and Beuchat (45) state, “Regardless of
the pH and aw, survival of E. coli O157:H7 was
better at 5°C than at 20°C or 30°C.” Furthermore,
preliminary experiments in this laboratory
suggest that E. coli declines more rapidly in the
presence of betaine than in its absence (Krist,
unpub. data).

Application of Predictive Models
The incorporation of predictive models into

devices such as temperature loggers has been
described for E. coli (46) and Pseudomonas (47),
as has the development of expert systems from
predictive modeling databases (48,49).

The current food poisoning crisis indicates
that existing quantitative information on micro-
bial growth, survival, and death, if properly
applied, would have an immediate impact on the
incidence of foodborne disease in the industrial-
ized world. Even without the synthesis of data
into mathematical models, simply logging the
temperature history of food processing, distribu-
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Figure 2. Effect of betaine on the growth of Escherichia
coli in glucose-minimal medium. Without added NaCl
the growth rate yield and minimum growth
temperature are the same with and without betaine.
With 4% NaCl the growth rate and yield are lower
without betaine and the actual minimum temperature
for growth is approximately 9°C lower than with
betaine (K. Krist, unpub. data).
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tion, and storage operations would provide much
useful information. Loggers provide a hard copy
of a temperature profile in real time and thus
evidence of temperature abuse and the source of
the abuse.

For loggers with appropriate software
(46,47), the temperature profile may be inter-
preted in terms of microbial growth. However,
the interpretation must be based on an informed
analysis of the temperature history by a trained
operator. The operator may, for example, be
required to enter default values for initial
bacterial numbers or provide an estimate of lag
phase duration under specified conditions.
Estimates of both imply general knowledge of
food microbiology and specific knowledge of the
process and products under consideration. The
equivalence of an estimate of microbial growth
derived from temperature profile to that obtained
from conventional microbiologic criteria may also
be necessary (15).

An alternative to the use of temperature
loggers is the development of in- or on-package
temperature tags as recommended in the U.S.
Food Safety Initiative draft document Food
Safety from Farm to Table (50). With tempera-
ture tags, informed interpretation is not required
because abuse is indicated directly by the tag
response. Therefore, the tag must indicate the
significance of the environmental history for
microbial behavior. The time/temperature tags
available are based on physical or chemical
changes that follow Arrhenius kinetics (9). While
these may give a reasonable approximation of
microbial growth in the normal range, the
deviation of microbial responses becomes in-
creasingly large as conditions move from normal
to stressful. The intriguing possibility of a
universal time/temperature indicator was flagged
(51) on the basis of observations made of
temperature effects on foodborne pathogens in
this laboratory and by Snyder (52). The universal
indicator is based on a relationship that describes
the maximum specific growth rate of a continuum
of organisms from psychrophiles to thermophiles
in terms of Arrhenius kinetics with an apparent
activation energy of ~80 kJ/mole. This value can
be related to the activation energy/growth rate at
any other temperature by a relative rate function
derived from Belehradek (square root) kinetics.

Conclusions
We have argued that a thorough understand-

ing of microbial ecology and physiology offers the
best opportunity to control microbial populations
in food and reverse the upward trend in the
incidence of foodborne disease. Many food
preservation strategies have their origin in
empirical observations practiced for thousands of
years. The systematic collection and collation of
data on microbial behavior in foods spawned the
discipline of food microbiology, within which
predictive microbiology (quantitative microbial
ecology) has accelerated our understanding of the
microbial ecology of foodborne bacteria. Studies
in microbial physiology will further enhance our
knowledge and offer new possibilities for food
preservation.

The most disturbing aspect of the current
crisis is that simple application of existing
knowledge would lead to a marked reduction in
the incidence of foodborne disease. Education of
food handlers and consumers in basic hygiene
and the consequences of temperature abuse is
urgently needed as is a greater depth of
understanding for those in technical positions in
the food industry or those with regulatory
responsibilities. Furthermore, an appreciation of
the need for shared responsibility for food safety
within all sectors of the continuum from farm to
table, including the consumer, has to be
developed. The U.S. Food Safety Initiative draft
document emphasizes this point, as does the
structure of the Australian Meat Research
Corporation’s Microbial Food Safety Key Pro-
gram (53).
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